Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 23;281(25):16927-16934.
doi: 10.1074/jbc.M600896200. Epub 2006 Apr 10.

Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells

Affiliations
Free article

Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells

Tomoe Ichikawa et al. J Biol Chem. .
Free article

Abstract

Vitamin K2 is a critical nutrient required for blood coagulation. It also plays a key role in bone homeostasis and is a clinically effective therapeutic agent for osteoporosis. We previously demonstrated that vitamin K2 is a transcriptional regulator of bone marker genes in osteoblastic cells and that it may potentiate bone formation by activating the steroid and xenobiotic receptor, SXR. To explore the SXR-mediated vitamin K2 signaling network in bone homeostasis, we identified genes up-regulated by both vitamin K2 and the prototypical SXR ligand, rifampicin, in osteoblastic cells using oligonucleotide microarray analysis and quantitative reverse transcription-PCR. Fourteen genes were up-regulated by both ligands. Among these, tsukushi, matrilin-2, and CD14 antigen were shown to be primary SXR target genes. Moreover, collagen accumulation in osteoblastic MG63 cells was enhanced by vitamin K2 treatment. Gain- and loss-of-function analyses showed that the small leucine-rich proteoglycan, tsukushi, contributes to vitamin K2-mediated enhancement of collagen accumulation. Our results suggest a new function for vitamin K2 in bone formation as a transcriptional regulator of extracellular matrix-related genes, that are involved in the collagen assembly.

PubMed Disclaimer

Publication types

LinkOut - more resources