Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 May-Jun;37(3):295-309.
doi: 10.1051/vetres:2006002. Epub 2006 Mar 9.

Immunity in the female sheep reproductive tract

Affiliations
Free article
Review

Immunity in the female sheep reproductive tract

Gary Entrican et al. Vet Res. 2006 May-Jun.
Free article

Abstract

Immune surveillance in the female reproductive tract is dependent on the interplay of many factors that include the expression of pattern recognition receptors on epithelial cells, resident leukocyte populations and hormones, none of which are uniform. The lower reproductive tract must accommodate the presence of commensal organisms whereas the upper reproductive tract is sterile. However, the upper female reproductive tract has its own immunological challenge in that it must tolerate the presence of a semi-allogeneic fetus if pregnancy is to succeed. So, immune activation and effector mechanisms to control pathogens may be qualitatively and quantitatively different along the reproductive tract. Our knowledge of innate and adaptive immunity in the sheep is less comprehensive than that of human or mouse. Nevertheless, comparative studies suggest that there are likely to be conserved innate immune sensory mechanisms (e.g. Toll-like receptors) and defence mechanisms (anti-proteases, defensins) that combine to limit infection in its early stages while shaping the adaptive response that leads to immunological memory and long-term protection. There are many pathogens that target the reproductive tract, and in particular the placenta, where specialised immunoregulatory mechanisms are operational. Among such pathogens are bacteria belonging to the genera Chlamydia/Chlamydophila that chronically infect the reproductive tracts of sheep and humans and ultimately cause disease through inflammation and tissue damage. An understanding of the immunological microenvironment of the reproductive tract is important for the design of novel control strategies to control chlamydial disease.

PubMed Disclaimer

Publication types

LinkOut - more resources