Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 10;496(5):739-58.
doi: 10.1002/cne.20963.

Developmental pattern of CB1 cannabinoid receptor immunoreactivity in brain regions important to zebra finch (Taeniopygia guttata) song learning and control

Affiliations

Developmental pattern of CB1 cannabinoid receptor immunoreactivity in brain regions important to zebra finch (Taeniopygia guttata) song learning and control

Ken Soderstrom et al. J Comp Neurol. .

Abstract

Zebra finches learn song during distinct developmental stages, making them an important species for studying mechanisms underlying vocal development. Distinct interconnected forebrain regions have been identified as important to specific features of zebra finch vocal learning and production. Because prior experiments have demonstrated that late postnatal exposure to cannabinoid agonists alters zebra finch song learning, we have sought to identify brain regions likely involved in it. By using an affinity-purified polyclonal antibody directed against the zebra finch CB(1) cannabinoid receptor, we have studied staining patterns in groups of males at 25, 50, 75, and >100 days of age (adults). A general waxing and waning of staining intensity were observed over this developmental period. Distinct staining of song-related brain regions was also noted. Early establishment of staining patterns within rostral telencephalic song regions [area X and lateral magnocellular nucleus of the anterior nidopallium (lMAN)] suggests a role in auditory learning. Later establishment and maintenance in adulthood of small somata and neuropil staining within regions of rostral telencephalon [HVC and robust nucleus of the arcopallium (RA)] are consistent with a vocal motor role for cannabinoid signaling. Our results provide insight into brain regions likely responsible for cannabinoid-altered vocal learning and add to accumulating evidence supporting an important role for cannabinoid signaling in CNS development.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources