Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec 16;181(2):691-9.
doi: 10.1016/0006-291x(91)91246-9.

Deletion of kringle domains or the N-terminal hairpin structure in hepatocyte growth factor results in marked decreases in related biological activities

Affiliations

Deletion of kringle domains or the N-terminal hairpin structure in hepatocyte growth factor results in marked decreases in related biological activities

K Matsumoto et al. Biochem Biophys Res Commun. .

Abstract

To determine the essential domain for biological activity in the hepatocyte growth factor (HGF) molecule, we prepared various mutated recombinant HGFs using site-directed mutagenesis, and examined the effects on DNA synthesis in hepatocytes, scattering of MDCK cells and the antiproliferative activity on HepG2 hepatoma cells. Native HGF and mutant HGFs, in which Gln534 and/or Tyr673 were respectively substituted for His and Ser to coincide with the catalytic triad amino acids in plasmin, markedly stimulated DNA synthesis of hepatocytes and scattering of MDCK cells but inhibited DNA synthesis of HepG2 cells. The mutant HGF deleted with the third or fourth kringle domain resulted in marked decrease of all three biological activities, while deletion of the N-terminal hairpin structure or the first or second kringle domain almost completely inactivated biological activities. We propose that the N-terminal hairpin structure and the first and second kringle domains are essential for biological activities of HGF and possibly for binding to its receptor.

PubMed Disclaimer

Publication types

LinkOut - more resources