Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;47(6):1054-61.
doi: 10.1161/01.HYP.0000218576.36574.54. Epub 2006 Apr 17.

Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure

Affiliations

Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure

Andrew M Allen et al. Hypertension. 2006 Jun.

Abstract

Angiotensin type 1A (AT(1A)) receptors are expressed within the rostral ventrolateral medulla, and microinjections of angiotensin II into this region increase sympathetic vasomotor tone. To determine the effect of sustained increases in AT(1A) receptor density or activity in rostral ventrolateral medulla, we used radiotelemetry to monitor blood pressure in conscious rats before and after bilateral microinjection into the rostral ventrolateral medulla of adenoviruses encoding the wild-type AT(1A) receptor or a constitutively active version of the receptor (Asn111Gly, [N111G]AT(1A)). The constitutively active receptor signals in the absence of angiotensin II. Adenovirus-directed receptor expression was extensively characterized both in vitro and in vivo. We established that adenoviral infection was limited to the rostral ventrolateral medulla and that receptor expression was sustained for > or =10 days; we also observed that adenoviral transgene expression occurs in glia, with no transgene expression observed in neurons of the rostral ventrolateral medulla. Rats receiving the wild-type AT(1A) receptor showed no change in blood pressure, whereas animals receiving the [N111G]AT(1A) receptor displayed an increase in blood pressure that persisted for 3 to 4 days before returning to basal levels. These data indicate that increased AT(1A) receptor activity (not just overexpression) is a primary determinant of efferent drive from rostral ventrolateral medulla and reveal counterregulatory processes that moderate AT(1A) receptor actions at this crucial relay point. More importantly, they imply that constitutive receptor signaling in glia of the rostral ventrolateral medulla can modulate the activity of adjacent neurons to change blood pressure.

PubMed Disclaimer

Comment in

Publication types

MeSH terms