Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 1;99(2):411-24.
doi: 10.1002/jcb.20842.

Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways

Affiliations

Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways

Sergiu Botolin et al. J Cell Biochem. .

Abstract

Insulin dependent diabetes mellitus (IDDM; type I) is a chronic disease stemming from little or no insulin production and elevated blood glucose levels. IDDM is associated with osteoporosis and increased fracture rates. The mechanisms underlying IDDM associated bone loss are not known. Previously we demonstrated that osteoblasts exhibit a response to acute (1 and 24 h) hyperglycemia and hyperosmolality. Here we examined the influence of chronic hyperglycemia (30 mM) and its associated hyperosmolality on osteoblast phenotype. Our findings demonstrate that osteoblasts respond to chronic hyperglycemia through modulated gene expression. Specifically, chronic hyperglycemia increases alkaline phosphatase activity and expression and decreases osteocalcin, MMP-13, VEGF and GAPDH expression. Of these genes, only MMP-13 mRNA levels exhibit a similar suppression in response to hyperosmotic conditions (mannitol treatment). Acute hyperglycemia for a 48-h period was also capable of inducing alkaline phosphatase and suppressing osteocalcin, MMP-13, VEGF, and GAPDH expression in differentiated osteoblasts. This suggests that acute responses in differentiated cells are maintained chronically. In addition, hyperglycemic and hyperosmotic conditions increased PPARgamma2 expression, although this increase reached significance only in 21 days chronic glucose treated cultures. Given that osteocalcin is suppressed and PPARgamma2 expression is increased in type I diabetic mouse model bones, these findings suggest that diabetes-associated hyperglycemia may modulate osteoblast gene expression, function and bone formation and thereby contribute to type I diabetic bone loss.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources