Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;36(5):1074-82.
doi: 10.1002/eji.200535685.

Carbohydrate-independent recognition of collagens by the macrophage mannose receptor

Affiliations
Free article

Carbohydrate-independent recognition of collagens by the macrophage mannose receptor

Luisa Martinez-Pomares et al. Eur J Immunol. 2006 May.
Free article

Abstract

Mannose receptor (MR) is the best characterised member of a family of four endocytic molecules that share a common domain structure; a cysteine-rich (CR) domain, a fibronectin-type II (FNII) domain and tandemly arranged C-type lectin-like domains (CTLD, eight in the case of MR). Two distinct lectin activities have been described for MR. The CR domain recognises sulphated carbohydrates while the CTLD mediate binding to mannose, fucose or N-acetylglucosamine. FNII domains are known to be important for collagen binding and this has been studied in the context of two members of the MR family, Endo180 and the phospholipase A2 receptor. Here, we have investigated whether the broad and effective lectin activity mediated by the CR domain and CTLD of MR is favoured to the detriment of FNII-mediated interaction(s). We show that MR is able to bind and internalise collagen in a carbohydrate-independent manner and that MR deficient macrophages have a marked defect in collagen IV and gelatin internalisation. These data have major implications at the molecular level as there are now three distinct ligand-binding sites described for MR. Furthermore our findings extend the range of endogenous ligands recognised by MR, a molecule firmly placed at the interface between homeostasis and immunity.

PubMed Disclaimer

Publication types