Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;155(1):12-21.
doi: 10.1016/j.jsb.2005.11.017. Epub 2006 Mar 30.

Intracellular distributions of essential elements in cardiomyocytes

Affiliations

Intracellular distributions of essential elements in cardiomyocytes

Bradley M Palmer et al. J Struct Biol. 2006 Jul.

Abstract

We describe the intracellular distributions of nine essential elements (P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn) found in cardiomyocytes imaged using synchrotron X-ray induced fluorescence. Cardiomyocytes were isolated from rat hearts, flash frozen on Si(3)N(4) windows, freeze-dried, and imaged with approximately 300 nm spatial resolution. Distinct longitudinal patterns in cardiomyocytes were most apparent for the elements Fe and Cu, which clearly colocalized. Transverse striations were apparent for P, S, Fe, and Zn, while those for Zn were consistently the most prominent ( approximately 10(-3)M) and appeared with a periodicity in the range 1.63-1.75 microm, the expected length of a sarcomere. Transverse striations for high concentrations of P, Fe, and Zn and low concentrations of S colocalized and coincided with the I-band of the intact cardiomyocyte. Fluorescence microscopy using FluoZin-3 in intact cardiomyocytes suggests that Zn(2+) influx is through sarcolemmal calcium channels and that significant stores of intracellular Zn(2+) may be released quickly (<1s) into the cytosol. These data collectively suggest that Zn(2+) is buffered by structures associated near the T-tubules and/or in the sarcoplasmic reticulum and is found in relative abundance sufficient to act as a modifier of Ca(2+) regulation or as a possible signaling messenger for gene expression.

PubMed Disclaimer

Publication types

LinkOut - more resources