Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;40(6):1041-9.
doi: 10.1038/ki.1991.312.

Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation

Affiliations
Free article

Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation

M S Paller et al. Kidney Int. 1991 Dec.
Free article

Abstract

To study the importance of oxygen free radical production by and injury to proximal tubule epithelial cells, an in vitro model was established. Rat renal proximal tubule epithelial cells in primary culture were subjected to normoxic conditions or 60 minutes of hypoxia and 30 minutes of reoxygenation. Under normoxic conditions, these cells produced superoxide radical, hydrogen peroxide, and hydroxyl radical. During hypoxia and reoxygenation, there was an increase in the production of these reactive oxygen species, detected in the extracellular medium, of 252, 226, and 45 percent, respectively. The production rate of superoxide radical was most markedly increased in the first five minutes of reoxygenation. Studies employing 2,7-dichlorofluorescein which fluoresces when oxidized by peroxides revealed a seven-fold increase in cellular fluorescence in cells studied after hypoxia and reoxygenation compared with control cells. That increased production of reactive oxygen species played a role in cellular injury was demonstrated by an increase in lipid peroxidation during hypoxia and reoxygenation, as well as substantial injury during hypoxia and reoxygenation which could be largely prevented by the addition of superoxide dismutase, catalase, dimethylthiourea, or deferoxamine to the cells. These studies demonstrate that proximal tubule epithelial cells produce reactive oxygen species in increased amounts during hypoxia and reoxygenation, and that these reactive oxygen species are injurious to the cells under these conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources