Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 15;368(2-3):531-41.
doi: 10.1016/j.scitotenv.2006.03.013. Epub 2006 Apr 19.

Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China

Affiliations

Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China

Rui-Qing Huang et al. Sci Total Environ. .

Abstract

The bioavailability, soil-to-plant transfer and associated health risks of arsenic in soils collected from paddy rice fields and vegetable fields in suburban areas of some major cities of Fujian Province were investigated. The total soil concentrations of arsenic ranged from 1.29 to 25.28 mg kg(-)(1) with a mean of 6.09 mg kg(-)(1). Available (NaH(2)PO(4)-extractable) arsenic content accounted for 0.7-38.2% of total soil arsenic and was significantly correlated with total soil arsenic content. For the vegetable soils, the available fraction (ratio of available As to total As) of arsenic decreased with decreasing silt (particle size 0.02-0.002 mm) and free iron (DCB extractable) contents and with increasing soil pH and organic matter content. The available fraction of arsenic in the paddy rice soils increased with increasing free iron and organic matter contents and decreasing soil pH and silt content. The correlation of NaH(2)PO(4)-extractable arsenic with the arsenic concentration of the vegetables was much better than that of total As. The transfer factor based on the soil available arsenic (TF(avail)) was chosen to compare the accumulation ability of the various crops. The TF(avail) values of rice grains (air-dried weight basis) ranged between 0.068 and 0.44 and were higher than those of the vegetables, ranging from 0.001 to 0.12. The accumulation ability of the crops decreased in the order of rice>radish>water spinach>celery>onion>taro>leaf mustard>fragrant-flowered garlic>pakchoi>Chinese cabbage>lettuce>garlic>cowpea>cauliflower>bottle gourd>towel gourd>eggplant. Daily consumption of rice and other As-rich vegetables could result in an excessive intake of arsenic, based on the provisional tolerable intake for adults for arsenic recommended by WHO.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources