Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells
- PMID: 16624865
- PMCID: PMC1483033
- DOI: 10.1091/mbc.e05-12-1123
Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells
Abstract
During epithelial-to-mesenchymal transitions (EMTs), cells must change their interactions with one another and with their extracellular matrix in a synchronized manner. To characterize signaling pathways cells use to coordinate these changes, we used NMuMG mammary epithelial cells. We showed that these cells become fibroblastic and scattered, with increased N-cadherin expression when cultured on collagen I. Rac1 and c-Jun NH2-terminal kinase (JNK) were activated when cells were plated on collagen I, and dominant inhibitory Rac1 (RacN17) or inhibition of JNK signaling prevented collagen I-induced morphological changes and N-cadherin up-regulation. Furthermore, inhibiting phosphoinositide-3 kinase (PI3K) activity prevented Rac1 and JNK activation as well as collagen I-induced N-cadherin up-regulation. These data implicate PI3K-Rac1-JNK signaling in collagen I-induced changes in NMuMG cells. To establish a role for N-cadherin in collagen I-induced cell scattering, we generated N-cadherin overexpressing and knockdown NMuMG cells and showed that knocking down N-cadherin expression prevented collagen I-induced morphological changes. Motility assays showed that cells overexpressing N-cadherin were significantly more motile than mock-transfected cells and that N-cadherin-mediated motility was collagen I dependent. In addition, we showed that cord formation and branching in three-dimensional culture (EMT-dependent events) required N-cadherin expression and PI3K-Rac1-JNK signaling.
Figures
References
-
- Affolter M., Bellusci S., Itoh N., Shilo B., Thiery J. P., Werb Z. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev. Cell. 2003;4:11–18. - PubMed
-
- Bakin A. V., Tomlinson A. K., Bhowmick N. A., Moses H. L., Arteaga C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 2000;275:36803–36810. - PubMed
-
- Berdichevsky F., Alford D., D’Souza B., Taylor-Papadimitriou J. Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 1994;107:3557–3568. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
