Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;57(6):1116-21.
doi: 10.1093/jac/dkl135. Epub 2006 Apr 19.

Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration

Affiliations

Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration

Sara K Olofsson et al. J Antimicrob Chemother. 2006 Jun.

Abstract

Objectives: To evaluate the mutant prevention concentrations (MPCs) of ciprofloxacin for two susceptible and one first-step gyrA resistant mutant Escherichia coli strains in an in vitro kinetic model and to identify the pharmacodynamic index that best predicts prevention of resistance emergence.

Methods: An in vitro kinetic model was used to measure MPC with static antibiotic concentrations and to test different dosing profiles to study pharmacokinetics/pharmacodynamics indices important to prevent the growth of resistant mutants. In one set of kinetic experiments the starting concentration was equal to the MPC and the T > MPC was varied before antibiotic dilution was begun. In a second set of kinetic experiments C(max) was varied and dilution of the antibiotic was started at time zero.

Results: From the static experiments we calculated MPC values of 0.128 mg/L for both the susceptible strains (16x MIC) and 0.188 mg/L (4x MIC) for the first-step resistant (gyrA) strain. The kinetic experiments showed that the T > MPC needed to prevent the growth of resistant bacteria was shorter with an increased C(max). When resistance was selected, several subpopulations with different levels of susceptibility to ciprofloxacin emerged.

Conclusions: Neither T > MPC nor C(max) proved to be single correlates for preventing resistance development. For the two investigated wild-type strains, an AUC/MPC ratio of > or =22 was the single pharmacodynamic index that predicted prevention of resistant mutant development.

PubMed Disclaimer

Publication types

MeSH terms