Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 2;359(2):378-89.
doi: 10.1016/j.jmb.2006.03.045. Epub 2006 Apr 3.

Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability

Affiliations

Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability

Jong-Shik Shin et al. J Mol Biol. .

Abstract

The native form of serine protease inhibitors (serpins) is kinetically trapped in a metastable state, which is thought to play a central role in the inhibitory mechanism. The initial binding complex between a serpin and a target protease undergoes a conformational change that forces the protease to translocate toward the opposite pole. Although structural determination of the final stable complex revealed a detailed mechanism of keeping the bound protease in an inactive conformation, it has remained unknown how the serpin exquisitely translocates a target protease with an acyl-linkage unhydrolyzed. We previously suggested that the acyl-linkage hydrolysis is strongly suppressed by active site perturbation during the protease translocation. Here, we address what induces the transient perturbation and how the serpin metastability contributes to the perturbation. Inhibitory activity of alpha1-antitrypsin (alpha1AT) toward elastase showed negative correlations with medium viscosity and Stokes radius of elastase moiety, indicating that viscous drag directly affects the protease translocation. Stopped-flow measurements revealed that the change in the inhibitory activity is primarily caused by the change in the translocation rate. The native stability of alpha1AT cavity mutants showed a negative correlation with the translocation rate but a positive correlation with the acyl-linkage hydrolysis rate, suggesting that the two kinetic steps are not independent but closely related. The degree of active site perturbation was probed by amino acid nucleophiles, supporting the view that the changes in the acyl-linkage hydrolysis rate are due to different perturbation states. These results suggest that the active site perturbation is caused by local imbalance between a pulling force driving protease translocation and a counteracting viscous drag force. The structural architecture of serpin metastability seems to be designed to ensure the active site perturbation by providing a sufficient pulling force, so the undesirable hydrolytic activity of protease is strongly suppressed during the translocation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources