Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 26;98(10):1273-81.
doi: 10.1161/01.RES.0000223059.19250.91. Epub 2006 Apr 20.

A calmodulin-binding site on cyclin E mediates Ca2+-sensitive G1/s transitions in vascular smooth muscle cells

Affiliations
Free article

A calmodulin-binding site on cyclin E mediates Ca2+-sensitive G1/s transitions in vascular smooth muscle cells

Jaehyun Choi et al. Circ Res. .
Free article

Abstract

Calcium transients are known to control several transition points in the eukaryotic cell cycle. For example, we have previously shown that a coordinate elevation in the intracellular free calcium ion concentration is required for G1- to S-phase cell cycle progression in vascular smooth muscle cells (VSMC). However, the molecular basis for this Ca2+ sensitivity was not known. Using buffers with differing [Ca2+], we found that the kinase activity of mouse and human cyclin E/CDK2, but not other G1/S-associated cell cycle complexes, was responsive to physiological changes in [Ca2+]. We next determined that this Ca2+-responsive kinase activity was dependent on a direct interaction between calmodulin (CaM), one of the major Ca2+-signal transducers of eukaryotic cells, and cyclin E. Pharmacological inhibition of CaM abrogated the Ca2+ sensitivity of cyclin E/CDK2 and retarded mouse VSMC proliferation by causing G1 arrest. We next defined the presence of a highly conserved 22 amino acid N-terminal CaM-binding motif in mammalian cyclin E genes (dissociation constant, 1.5+/-0.1 micromol/L) and showed its essential role in mediating Ca2+-sensitive kinase activity of cyclin E/CDK2. Mutant human cyclin E protein, lacking this CaM-binding motif, was incapable of binding CaM or responding to [Ca2+]. Taken together, these findings reveal CaM-dependent cyclin E/CDK2 activity as a mediator of the known Ca2+ sensitivity of the G1/S transition of VSMC.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources