Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug;173(3):374-88.
doi: 10.1007/s00221-006-0387-9. Epub 2006 Apr 21.

Mechanisms of human static spatial orientation

Affiliations

Mechanisms of human static spatial orientation

S B Bortolami et al. Exp Brain Res. 2006 Aug.

Abstract

We have developed a tri-axial model of spatial orientation applicable to static 1g and non-1g environments. The model attempts to capture the mechanics of otolith organ transduction of static linear forces and the perceptual computations performed on these sensor signals to yield subjective orientation of the vertical direction relative to the head. Our model differs from other treatments that involve computing the gravitoinertial force (GIF) vector in three independent dimensions. The perceptual component of our model embodies the idea that the central nervous system processes utricular and saccular stimuli as if they were produced by a GIF vector equal to 1g, even when it differs in magnitude, because in the course of evolution living creatures have always experienced gravity as a constant. We determine just two independent angles of head orientation relative to the vertical that are GIF dependent, the third angle being derived from the first two and being GIF independent. Somatosensory stimulation is used to resolve our vestibular model's ambiguity of the up-down directions. Our otolith mechanical model takes into account recently established non-linear behavior of the force-displacement relationship of the otoconia, and possible otoconial deflections that are not co-linear with the direction of the input force (cross-talk). The free parameters of our model relate entirely to the mechanical otolith model. They were determined by fitting the integrated mechanical/perceptual model to subjective indications of the vertical obtained during pitch and roll body tilts in 1g and 2g force backgrounds and during recumbent yaw tilts in 1g. The complete data set was fit with very little residual error. A novel prediction of the model is that background force magnitude either lower or higher than 1g will not affect subjective vertical judgments during recumbent yaw tilt. These predictions have been confirmed in recent parabolic flight experiments.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurophysiol. 2002 Feb;87(2):819-33 - PubMed
    1. NASA Contract Rep NASA CR. 1966 Nov;:1-192 - PubMed
    1. Aviat Space Environ Med. 1978 Mar;49(3):484-8 - PubMed
    1. Aviat Space Environ Med. 1999 Sep;70(9):879-86 - PubMed
    1. J Appl Physiol. 1955 May;7(6):666-70 - PubMed

LinkOut - more resources