Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;33(3):419-32.
doi: 10.1016/j.nucmedbio.2006.01.005.

Evaluation of novel cationic (99m)Tc-nitrido complexes as radiopharmaceuticals for heart imaging: improving liver clearance with crown ether groups

Affiliations

Evaluation of novel cationic (99m)Tc-nitrido complexes as radiopharmaceuticals for heart imaging: improving liver clearance with crown ether groups

Shuang Liu et al. Nucl Med Biol. 2006 Apr.

Abstract

This report describes the evaluation of a series of novel cationic (99m)Tc-nitrido complexes, [(99m)TcN(DTC)(PNP)]+ (DTC = crown ether-containing dithiocarbamates; PNP = bisphosphine), as potential radiotracers for myocardial perfusion imaging. Synthesis of cationic (99m)Tc-nitrido complexes was accomplished in two steps according to literature methods. Biodistribution studies were performed in rats. Planar images of Sprague-Dawley rats administered with 15+/-2 MBq of cationic (99m)Tc radiotracer were obtained using a PhoGama large field-of-view Anger camera. Samples from both urine and feces were analyzed by a reversed-phase radio-HPLC method. Results from biodistribution studies showed that most of the cationic (99m)Tc-nitrido complexes have a high initial heart uptake with a long myocardial retention. They also show a rapid clearance from the liver and lungs. Cationic complexes [(99m)TcN(L2)(L6)]+ and [(99m)TcN(L4)(L6)]+ show heart/liver ratios four to five times better than that of (99m)Tc-sestamibi due to their much faster liver clearance. Their heart uptake and heart/liver ratio are comparable to that of (99m)TcN-DBODC5 within the experimental error. These findings have been confirmed by the results from imaging studies. Radio-HPLC analysis of urine and feces samples indicated that there was very little metabolism of cationic (99m)Tc-nitrido complexes in rats under anesthesia. The key finding of this study is that lipophilicity remains the most important factor affecting both heart uptake and target-to-background (T/B) ratios. Crown ethers are very useful functional groups to improve the liver clearance of cationic (99m)Tc-nitrido complexes. It is the combination of the appropriate DTCs and bisphosphines that results in cationic (99m)Tc-nitrido complexes with high heart uptake and fast clearance from the liver at the same time. The fast liver clearance of [(99m)TcN(L2)(L6)]+ and [(99m)TcN(L4)(L6)]+ suggests that they might be used to obtain clinically useful images as early as 30 min postinjection. [(99m)TcN(L2)(L6)]+ and [(99m)TcN(L4)(L6)]+ are very promising candidates for further evaluation in more extensive preclinical animal models.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources