Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 18;16(8):825-31.
doi: 10.1016/j.cub.2006.03.059.

Long-range directional movement of an interphase chromosome site

Affiliations
Free article

Long-range directional movement of an interphase chromosome site

Chien-Hui Chuang et al. Curr Biol. .
Free article

Abstract

Increasing evidence suggests functional compartmentalization of interphase nuclei. This includes preferential interior localization of gene-rich and early replicating chromosome regions versus peripheral localization of gene-poor and late replicating chromosome regions , association of some active genes with nuclear speckles or transcription "factories", and association of transcriptionally repressed genes with heterochromatic regions. Dynamic changes in chromosome compartmentalization imply mechanisms for long-range interphase chromatin movements. However, live cell imaging in mammalian cells has revealed limited chromatin mobility, described as "constrained diffusion". None of these studies, though, have examined a chromosome locus undergoing an inducible repositioning between two different nuclear compartments. Here we demonstrate migration of an interphase chromosome site from the nuclear periphery to the interior 1-2 hr after targeting a transcriptional activator to this site. Spot redistribution is perturbed by specific actin or nuclear myosin I mutants. Extended periods of chromosome immobility are interspersed with several minute periods in which chromosomes move unidirectionally along curvilinear paths oriented roughly perpendicular to the nuclear envelope at velocities of 0.1-0.9 microm/min over distances of 1-5 microm. Our results suggest an active mechanism for fast and directed long-range interphase chromosome movements dependent directly or indirectly on actin/myosin.

PubMed Disclaimer

Publication types