Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 May;59(5):735-42.
doi: 10.1002/ana.20845.

Cellular and molecular mechanisms of neural repair after stroke: making waves

Affiliations
Review

Cellular and molecular mechanisms of neural repair after stroke: making waves

S Thomas Carmichael. Ann Neurol. 2006 May.

Abstract

Stroke is associated with a limited degree of functional recovery. Imaging studies in humans have shown that reorganization in periinfarct and connected cortical areas most closely correlates with functional recovery after stroke. On a cellular level, two major regenerative events occur in periinfarct cortex: axons sprout new connections and establish novel projection patterns, and newly born immature neurons migrate into periinfarct cortex. Stroke induces a unique microenvironment for axonal sprouting in periinfarct cortex, in which growth-inhibitory molecules are reduced for 1 month after the infarct. During this period, neurons activate growth-promoting genes in successive waves. Neurogenesis also occurs through waves of migration of immature neurons from their origin in the subventricular zone into periinfarct cortex. This migration is mediated, in part, by the cytokine erythropoietin. These data indicate that the cellular environment after stroke is far from one of just death and destruction, but rather involves a longer evolving process of neuronal regeneration. Poststroke neuronal regeneration is characterized by waves of specific cellular and molecular events. Manipulating these waves of regeneration may provide for novel therapies that will improve recovery after stroke.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources