Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov;8(6):835-56.
doi: 10.1093/oxfordjournals.molbev.a040686.

Evolution of retroposons by acquisition or deletion of retrovirus-like genes

Affiliations

Evolution of retroposons by acquisition or deletion of retrovirus-like genes

M A McClure. Mol Biol Evol. 1991 Nov.

Abstract

The retroid family consists of all genetic elements that encode a potential reverse transcriptase (RT). Members of this family include a diversity of eukaryotic genetic elements (viruses, transposable elements, organelle introns, and plasmids) and the retrons of prokaryotes. Some retroid elements have, in addition to the RT gene, other genes in common with the retroviruses. On the basis of RT sequence similarity, the retroposon group is defined as the eukaryotic long interspersed nuclear elements, the transposable elements of (1) Drosophila melanogaster (I and F factors), (2) Trypanosoma brucei (ingi element), (3) Zea mays (Cin4), (4) Bombyx mori (R2Bm), and members of the group II introns and plasmids of yeast mitochondria. The data presented here elucidate the extent of the relationships between the retroposons and other retroid-family members. Protein-sequence alignment data demonstrate that subsets of the retroposons contain different assortments of retroviral-like genes. Sequence similarities can be detected between the capsid, protease, ribonuclease H, and integrase proteins of retroviruses and several retroposon sequences. The relationships among the retroposon capsid-like sequences are congruent with the RT sequence phylogeny. In contrast, the similarity between ribonuclease H sequences varies in different subbranches of the retroposon lineage. These data suggest that xenologous recombination (i.e., the replacement of a homologous resident gene by a homologous foreign gene) and/or independent gene assortment have played a role in the evolution of the retroposons.

PubMed Disclaimer

Publication types

LinkOut - more resources