Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 May;231(5):505-13.
doi: 10.1177/153537020623100504.

Molecular mechanisms of prothrombotic risk due to genetic variations in platelet genes: Enhanced outside-in signaling through the Pro33 variant of integrin beta3

Affiliations
Free article
Review

Molecular mechanisms of prothrombotic risk due to genetic variations in platelet genes: Enhanced outside-in signaling through the Pro33 variant of integrin beta3

K Vinod Vijayan et al. Exp Biol Med (Maywood). 2006 May.
Free article

Abstract

In recent years inherited variations in platelet proteins have emerged as potential risk factors that could predispose individuals to arterial thrombosis. Although many studies have examined the association of platelet gene polymorphisms with particular disease states, the underlying mechanisms by which most of these polymorphisms contribute to the pathophysiology of thrombosis have remained largely unexplored. This review will focus on the cellular and molecular features by which these genetic changes affect platelet physiology. Although many genes have been investigated in this regard, only the genes encoding integrins beta3 and alpha2, and the platelet Fc receptor, Fc(gamma)RIIA, have been studied in any depth. In some cases (such as integrin alpha2), evidence supports a quantitative trait locus. For other genes, nonsynonymous nucleotide substitutions lead to structural and functional consequences. A large portion of this review will focus on the widely studied Leu33Pro (Pl(A)) polymorphism of integrin beta3, and will consider the potential mechanisms by which the Pro33 polymorphism could induce a prothrombotic risk. A detailed understanding of how polymorphisms modulate platelet physiology will be important for understanding individual differences in response to antiplatelet therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms