Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;70(4):768-73.
doi: 10.1271/bbb.70.768.

Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development

Affiliations

Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development

Hoyeun Kim et al. Biosci Biotechnol Biochem. 2006 Apr.

Abstract

Transgenic plants overexpressing AXR3/IAA17 were impaired in root growth. Specifically, they exhibited severe defects in lateral root and root hair development similar to the root phenotypes of epi-brassinolide (epiBL)-treated wild-type plants. Here, we investigated the involvement of AXR3/IAA17 gene expression in brassinosteroid (BR)-regulated root development. Exogenous epiBL application significantly induced expression of the AXR3/IAA17 gene as well as several Aux/IAA genes, such as AXR2/IAA7, SLR/IAA14, and IAA28. We analyzed the transcription levels of several Aux/IAA genes related to root development in the BR signaling mutant bri1 and the BR biosynthesis mutant det2. AXR3/IAA17 gene expression was significantly decreased in bri1 plants. In det2 plants, expression of AXR3/IAA17 slightly decreased. This in turn suggests that epiBL induced these Aux/IAA genes, and that these induced gene products might function as factors in root development. Furthermore, AXR3/IAA17 might be involved in the BR signaling pathway, suggesting an intersection node of BR-auxin signaling in root development.

PubMed Disclaimer

Publication types

MeSH terms