Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar-Apr;40(2):195-210.

[Quorum sensing of genes expression--perspective drug target against bacterial pathogenicity]

[Article in Russian]
  • PMID: 16637260
Review

[Quorum sensing of genes expression--perspective drug target against bacterial pathogenicity]

[Article in Russian]
I A Khmel' et al. Mol Biol (Mosk). 2006 Mar-Apr.

Abstract

Bacteria are capable to sense an increase of cell density population and to reply quickly and coordinately by the induction of special sets of genes. This type of the regulation was named Quorum Sensing (QS); it is based on the effect of low-molecular-weight signaling molecules of different nature (autoinducers) which accumulate in the culture at high density of bacterial population and interact with receptor regulatory proteins. QS systems are the global regulators of bacterial genes expression and play a key role in the control of many metabolic processes in cell including the regulation of virulence of bacteria. Here we review the molecular mechanisms of QS systems functioning in bacteria belonging to different taxonomic groups and discuss the potential of QS regulation as a new drug target for the treatment of bacterial infections. At present this approach is accounted as a new alternative strategy of antimicrobial therapy directed on the development of drugs inhibiting QS regulation and active just against pathogenicity of bacteria (antipathogenic drugs). Such a strategy allows to avoid a wide dissemination of resistant forms of pathogenic bacteria and the formation of biofilms increasing in many times the resistance of bacteria to drug preparations.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms