Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;97(5):1232-42.
doi: 10.1111/j.1471-4159.2006.03752.x. Epub 2006 Apr 21.

Nitric oxide-producing microglia mediate thrombin-induced degeneration of dopaminergic neurons in rat midbrain slice culture

Affiliations
Free article

Nitric oxide-producing microglia mediate thrombin-induced degeneration of dopaminergic neurons in rat midbrain slice culture

Hiroshi Katsuki et al. J Neurochem. 2006 Jun.
Free article

Abstract

Activated microglia are considered to play important roles in degenerative processes of midbrain dopaminergic neurons. Here we examined mechanisms of neurotoxicity of thrombin, a protease known to trigger microglial activation, in organotypic midbrain slice cultures. Thrombin induced a progressive decline in the number of dopaminergic neurons, an increase in nitric oxide (NO) production, and whole tissue injury indicated by lactate dehydrogenase release and propidium iodide uptake. Microglia expressed inducible NO synthase (iNOS) in response to thrombin, and inhibition of iNOS rescued dopaminergic neurons without affecting whole tissue injury. Inhibitors of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK) attenuated thrombin-induced iNOS induction and dopaminergic cell death. Whole tissue injury was also attenuated by inhibition of ERK and p38 MAPK. Moreover, depletion of resident microglia from midbrain slices abrogated thrombin-induced NO production and dopaminergic cell death, but did not inhibit tissue injury. Finally, antioxidative drugs prevented thrombin-induced dopaminergic cell death without affecting whole tissue injury. Hence, NO production resulting from MAPK-dependent microglial iNOS induction is a crucial event in thrombin-induced dopaminergic neurodegeneration, whereas damage of other midbrain cells is MAPK-dependent but is NO-independent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources