Pyrophosphate inhibition of Proteus mirabilis-induced struvite crystallization in vitro
- PMID: 1663844
- DOI: 10.1016/0009-8981(91)90082-n
Pyrophosphate inhibition of Proteus mirabilis-induced struvite crystallization in vitro
Abstract
Struvite (MgNH4PO4.6H2O) crystals, the major mineral component of infectious urinary calculi, were produced in vitro by growth of a clinical isolate of Proteus mirabilis in artificial urine. P. mirabilis growth and urease-induced struvite production were monitored by phase contrast light microscopy and measurements of urease activity, pH, ammonia concentrations, turbidity, and culture viability. In the absence of pyrophosphate, struvite crystals appeared within 3-5 h due to the urease-induced elevation of pH and initially assumed a planar or 'X-shaped' crystal habit (morphology) characteristic of rapid growth. When pyrophosphate was present, initial precipitation and crystal appearance were significantly impaired and precipitates were largely amorphous. When crystals did appear (usually after 7 or 8 h) they were misshapen or octahedral in shape indicative of very slow growth. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) identified all crystals as struvite. Trace contaminates of carbonate-apatite (Ca10(PO4)6CO3) or newberyite (MgHPO4.H2O) were produced only in the absence of pyrophosphate. P. mirabilis viability and culture pH elevation were unaffected by the addition of pyrophosphate, whereas urease activity and ammonia concentrations were marginally reduced. Struvite could also be produced chemically by titration of the artificial urine with NH4OH. If pyrophosphate was present during titration, the same inhibitory effect on crystal growth occurred, so it is unlikely that urease inhibition is important. Lowering of pyrophosphate concentration from 13-0.45 mumol/l did not reduce its inhibitory activity so it is unlikely to act by chelating free Mg2+. We propose that pyrophosphate inhibits struvite growth principally through direct interference with the chemical mechanisms involved in crystal nucleation and growth, because of its effectiveness at very low concentrations.
Similar articles
-
Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi.Infect Immun. 1994 Jul;62(7):2998-3003. doi: 10.1128/iai.62.7.2998-3003.1994. Infect Immun. 1994. PMID: 8005688 Free PMC article.
-
In vitro inhibition of struvite crystal growth by acetohydroxamic acid.Br J Urol. 1992 Oct;70(4):355-9. doi: 10.1111/j.1464-410x.1992.tb15787.x. Br J Urol. 1992. PMID: 1450840
-
A simple technique for studying struvite crystal growth in vitro.Urol Res. 1990;18(1):39-43. doi: 10.1007/BF00294580. Urol Res. 1990. PMID: 2180168
-
[Urinary calculi and infection].Urologia. 2014 Apr-Jun;81(2):93-8. doi: 10.5301/uro.5000073. Epub 2014 May 27. Urologia. 2014. PMID: 24874306 Review. Italian.
-
Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review.World J Urol. 1999 Oct;17(5):308-15. doi: 10.1007/s003450050152. World J Urol. 1999. PMID: 10552150 Review.
Cited by
-
Glycosaminoglycans and struvite calculi.World J Urol. 1994;12(1):49-51. doi: 10.1007/BF00182051. World J Urol. 1994. PMID: 8012416 Review.
-
Repeated use of Bacillus subtilis cell walls for copper binding.World J Microbiol Biotechnol. 1994 Jul;10(4):472-4. doi: 10.1007/BF00144475. World J Microbiol Biotechnol. 1994. PMID: 24421100
-
Factors modulating the pH at which calcium and magnesium phosphates precipitate from human urine.Urol Res. 2005 Aug;33(4):254-60. doi: 10.1007/s00240-004-0458-y. Urol Res. 2005. PMID: 15981006
-
Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi.Infect Immun. 1994 Jul;62(7):2998-3003. doi: 10.1128/iai.62.7.2998-3003.1994. Infect Immun. 1994. PMID: 8005688 Free PMC article.
-
Citrate and urease-induced crystallization in synthetic and human urine.Urol Res. 1993 Mar;21(2):109-15. doi: 10.1007/BF01788828. Urol Res. 1993. PMID: 8503146
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources