Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 15;108(8):2624-31.
doi: 10.1182/blood-2005-12-007484. Epub 2006 Apr 25.

VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment

Affiliations
Free article

VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment

Alexandra Gampel et al. Blood. .
Free article

Abstract

Endothelial cells respond to vascular endothelial growth factor (VEGF) to produce new blood vessels. This process of angiogenesis makes a critical contribution during embryogenesis and also in the response to ischemia in adult tissues. We have studied the intracellular trafficking of the major VEGF receptor KDR (VEGFR2). Unlike other related growth factor receptors, we find that a significant proportion of KDR is held in an endosomal storage pool within endothelial cells. We find that KDR can be delivered to the plasma membrane from this intracellular pool and that VEGF stimulates this recycling to the cell surface. KDR recycling appears to be distinct from the previously characterized Rab4- and Rab11-dependent pathways, but, instead, KDR(+) recycling vesicles contain Src tyrosine kinase and VEGF-stimulated recycling requires Src activation. Taken together, these data show that intracellular trafficking of KDR is markedly different from other receptor tyrosine kinases and suggest that the regulation of KDR trafficking by VEGF provides a novel mechanism for controlling the sensitivity of endothelial cells to proangiogenic signals.

PubMed Disclaimer

Publication types

MeSH terms

Substances