Pharmacological and biochemical characteristics of partially purified GABAB receptor
- PMID: 1664062
- DOI: 10.1007/BF00966099
Pharmacological and biochemical characteristics of partially purified GABAB receptor
Abstract
Pharmacological and biochemical characteristics of the partially purified gamma-aminobutyric acid (GABA)B receptor using baclofen affinity column chromatography have been examined. The Scatchard analysis of [3H]GABA binding to the purified GABAB receptor showed a linear relationship and the KD and Bmax values were 60 nM and 118 pmol/mg of protein, respectively. Although GTP and Mg2+ did not affect on the GABAB receptor binding, Ca2+ significantly increased [3H]GABA binding to the purified GABAB receptor in a dose-dependent manner and showed its maximum effect at 2 mM. The enhancement of the binding by Ca2+ was found to be due to the increase of Bmax by the Scatchard analysis. The treatments with pronase and trypsin significantly decreased the binding of [3H]GABA, but phospholipase A2 had no significant effect on the binding. In addition, treatment with glycosidases such as glycopeptidase A and beta-galactosidase significantly decreased the binding of [3H]GABA to the purified GABAB receptor. These results suggest that purification of the solubilized GABAB receptor by the affinity column chromatography may result in the functional uncoupling of GABAB receptor with GTP-binding protein. Furthermore, the present results suggest that cerebral GABAB receptor may be a glycoprotein and membrane phospholipids susceptible to phospholipase A2 treatment may not be involved in the exhibition of the binding activity.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous