Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;30(12B):1381-6.
doi: 10.1016/s0028-3908(11)80005-5.

Immunohistochemistry of diazepam binding inhibitor (DBI) in the central nervous system and peripheral organs: its possible role as an endogenous regulator of different types of benzodiazepine receptors

Affiliations

Immunohistochemistry of diazepam binding inhibitor (DBI) in the central nervous system and peripheral organs: its possible role as an endogenous regulator of different types of benzodiazepine receptors

H Alho et al. Neuropharmacology. 1991 Dec.

Abstract

The distribution of diazepam binding inhibitor (DBI), a multi-function peptide which has recently been discovered, was studied in the rat and human central nervous system and in peripheral organs of the rat by light and electron microscopical immunohistochemistry. In the central nervous system, DBI-LI was localized in many glial cells and glial tumors, and in some neurons. In the periphery, DBI-LI was found in many tissues but it was expressed selectively in specialized cell types. Intense DBI-LI was observed in some endocrine, steroid-producing cells such as glomerular cells of the adrenal gland and Leydig cells of the of the testis. Different types of epithelial cells, for instance distal convoluted tabular cells of the kidney and mucosal cells of the small intestine, displayed moderate DBI-LI. Some supporting cells, such as Schwann cells and Sertoli cells, were also immunopositive. The frequent localization of DBI in cells, also known to contain large amounts of mitochondrial benzodiazepine receptors, indicates that DBI may play an important role as an endogenous regulator of intracellular metabolic functions via the mitochondrial benzodiazepine receptor.

PubMed Disclaimer

MeSH terms