Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;92(1):78-86.
doi: 10.1093/toxsci/kfj213. Epub 2006 Apr 26.

Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics?

Affiliations

Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics?

Eva Rached et al. Toxicol Sci. 2006 Jul.

Abstract

Ochratoxin A (OTA) is a potent nephrotoxin and causes high incidences of renal tumors in rodents. The molecular events leading to tumor formation by OTA are not well defined. Early pathological changes observed in kidneys of rats treated with OTA in vivo include frequent mitotic and abnormally enlarged cells, detachment of tubule cells, and apoptosis within the S3 segment of the proximal tubule, suggesting that OTA may interfere with molecules involved in the regulation of cell division and apoptosis. In this study, treatment of immortalized human kidney epithelial (IHKE) cells with OTA (0-50 microM) resulted in a time- and dose-dependent increase in apoptosis and activation of c-Jun N-terminal kinase. At the same time, OTA blocked metaphase/anaphase transition and led to the formation of aberrant mitotic figures and giant cells with abnormally enlarged and/or multiple nuclei, sometimes still connected by chromatin bridges. Immunostaining of the mitotic apparatus using an alpha-tubulin antibody revealed defects in spindle formation. In addition, OTA inhibited microtubule assembly in a concentration-dependent manner in a cell-free, in vitro assay. Interestingly, treatment with OTA also resulted in activation of the transcription factor nuclear factor kappa B (NFkappaB), which has recently been shown to promote cell survival during mitotic cell cycle arrest. Based on these observations, we hypothesize that the mechanism by which OTA promotes tumor formation involves interference with microtubuli dynamics and mitotic spindle formation, resulting in apoptosis or-in the presence of survival signals such as stimulation of the NFkappaB pathway-premature exit from mitosis. Aberrant exit from mitosis resulting in blocked or asymmetric cell division may favor the occurrence of cytogenetic abnormalities and may therefore play a critical role in renal tumor formation by OTA.

PubMed Disclaimer

Similar articles

Cited by

Publication types