p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis
- PMID: 16641528
- DOI: 10.1272/jnms.73.54
p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis
Abstract
p53 as a key molecular node in the stress response pathway, including inflammation. p53 is involved in several critical pathways including cell cycle arrest, apoptosis, DNA repair, and cellular senescence, which are essential for normal cellular homeostasis and maintaining genome integrity. The alteration of the TP53 gene or posttranslational modification in the p53 protein can alter its response to cellular stress. The molecular archaeology of the TP53 mutation spectrum generates hypotheses concerning the etiology and molecular pathogenesis of human cancer. The spectrum of somatic mutations in the TP53 gene implicates environmental carcinogens, and both endogenous agents and processes in the etiology of human cancer.
Similar articles
-
Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment.Lung Cancer. 2001 Dec;34 Suppl 2:S7-15. doi: 10.1016/s0169-5002(01)00339-7. Lung Cancer. 2001. PMID: 11720736 Review.
-
TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer.IARC Sci Publ. 2004;(157):247-70. IARC Sci Publ. 2004. PMID: 15055300 Review.
-
p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment.Ann N Y Acad Sci. 2000;919:79-85. doi: 10.1111/j.1749-6632.2000.tb06870.x. Ann N Y Acad Sci. 2000. PMID: 11083100
-
TP53 tumour suppressor gene: clues to molecular carcinogenesis and cancer therapy.Cancer Surv. 1996;28:169-96. Cancer Surv. 1996. PMID: 8977035 Review.
-
p53 tumor-suppressor gene: clues to molecular carcinogenesis.J Cell Physiol. 1997 Nov;173(2):247-55. doi: 10.1002/(SICI)1097-4652(199711)173:2<247::AID-JCP30>3.0.CO;2-A. J Cell Physiol. 1997. PMID: 9365531 Review.
Cited by
-
Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53.Cell Cycle. 2012 Dec 15;11(24):4570-8. doi: 10.4161/cc.22843. Epub 2012 Nov 19. Cell Cycle. 2012. PMID: 23165212 Free PMC article.
-
P53 Immunoexpression in Laryngeal Squamous Cell Carcinoma.Curr Health Sci J. 2017 Oct-Dec;43(4):325-329. doi: 10.12865/CHSJ.43.04.06. Epub 2017 Dec 28. Curr Health Sci J. 2017. PMID: 30595897 Free PMC article.
-
Common genetic variation in TP53 and risk of human papillomavirus persistence and progression to CIN3/cancer revisited.Cancer Epidemiol Biomarkers Prev. 2009 May;18(5):1631-7. doi: 10.1158/1055-9965.EPI-08-0830. Cancer Epidemiol Biomarkers Prev. 2009. PMID: 19423538 Free PMC article.
-
Immunohistochemistry and scoring of Ki-67 proliferative index and p53 expression in gastric B cell lymphoma from Northern African population: a pilot study.J Gastrointest Oncol. 2016 Jun;7(3):462-8. doi: 10.21037/jgo.2016.01.01. J Gastrointest Oncol. 2016. PMID: 27284480 Free PMC article.
-
The Dual Roles of MAGE-C2 in p53 Ubiquitination and Cell Proliferation Through E3 Ligases MDM2 and TRIM28.Front Cell Dev Biol. 2022 Jul 19;10:922675. doi: 10.3389/fcell.2022.922675. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35927984 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous