Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep;27(5):752-64.
doi: 10.1016/j.neuro.2006.03.003. Epub 2006 Mar 22.

Application of pharmacokinetic data to the risk assessment of inhaled manganese

Affiliations
Review

Application of pharmacokinetic data to the risk assessment of inhaled manganese

David C Dorman et al. Neurotoxicology. 2006 Sep.

Abstract

There is increased interest within the scientific community concerning the neurotoxicity of manganese owing in part to the use of methylcyclopentadienyl manganese tricarbonyl (MMT) as a gasoline fuel additive and an enhanced awareness that this essential metal may play a role in hepatic encephalopathy and other neurologic diseases. Neurotoxicity generally arises over a prolonged period of time and results when manganese intake exceeds its elimination leading to increases in brain manganese concentration. Neurotoxicity can occur following high dose oral, inhalation, or parenteral exposure or when hepatobiliary clearance of this metal is impaired. Studies completed during the past several years have substantially improved our understanding of the health risks posed by inhaled manganese by determining exposure conditions that lead to increased concentrations of manganese within the central nervous system and other target organs. Many of these studies focused on phosphates, sulfates, and oxides of manganese since these are formed and emitted following MMT combustion by an automobile. These studies have evaluated the role of direct nose-to-brain transport of inhaled manganese and have examined differences in manganese toxicokinetics in potentially sensitive subpopulations (e.g., fetuses, neonates, individuals with compromised hepatic function or sub-optimal manganese intake, and the aged). This manuscript reviews the U.S. Environmental Protection Agency's current risk assessment for inhaled manganese, summarizes these contemporary pharmacokinetic studies, and considers how these data could inform future risk assessments of this metal following inhalation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources