Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 9;98(11):1431-8.
doi: 10.1161/01.RES.0000224114.65109.4e. Epub 2006 Apr 27.

Extracellular matrix remodeling and organization in developing and diseased aortic valves

Affiliations
Free article

Extracellular matrix remodeling and organization in developing and diseased aortic valves

Robert B Hinton Jr et al. Circ Res. .
Free article

Abstract

Heart valve disease is an important cause of morbidity and mortality worldwide. Little is known about valve disease pathogenesis, but increasing evidence implicates a genetic basis for valve disease, suggesting a developmental origin. Although the cellular and molecular processes involved in early valvulogenesis have been well described, less is known about the regulation of valve extracellular matrix (ECM) organization and valvular interstitial cell (VIC) distribution that characterize the mature valve structure. Histochemistry, immunohistochemistry, and electron microscopy were used to examine ECM organization, VIC distribution, and cell proliferation during late valvulogenesis in chicken and mouse. In mature valves, ECM organization is conserved across species, and developmental studies demonstrate that ECM stratification begins during late embryonic cusp remodeling and continues into postnatal life. Cell proliferation decreases concomitant with ECM stratification and VIC compartmentalization. Explanted, stenotic bicuspid aortic valves (BAVs) from pediatric patients were also examined. The diseased valves exhibited disruption of the highly organized ECM and VIC distribution seen in normal valves. Cusps from diseased valves were thickened with increased and disorganized collagens and proteoglycans, decreased and fragmented elastic fibers, and cellular disarray without calcification or cell proliferation. Taken together, these studies show that normal valve development is characterized by spatiotemporal coordination of ECM organization and VIC compartmentalization and that these developmental processes are disrupted in pediatric patients with diseased BAVs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources