Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;10(2-4):181-96.
doi: 10.1159/000091564.

[NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation

Affiliations
Review

[NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation

Tanja Burgdorf et al. J Mol Microbiol Biotechnol. 2005.

Abstract

Recent research on hydrogenases has been notably motivated by a desire to utilize these remarkable hydrogen oxidation catalysts in biotechnological applications. Progress in the development of such applications is substantially hindered by the oxygen sensitivity of the majority of hydrogenases. This problem tends to inspire the study of organisms such as Ralstonia eutropha H16 that produce oxygen-tolerant [NiFe]-hydrogenases. R. eutropha H16 serves as an excellent model system in that it produces three distinct [NiFe]-hydrogenases that each serve unique physiological roles: a membrane-bound hydrogenase (MBH) coupled to the respiratory chain, a cytoplasmic, soluble hydrogenase (SH) able to generate reducing equivalents by reducing NAD+ at the expense of hydrogen, and a regulatory hydrogenase (RH) which acts in a signal transduction cascade to control hydrogenase gene transcription. This review will present recent results regarding the biosynthesis, regulation, structure, activity, and spectroscopy of these enzymes. This information will be discussed in light of the question how do organisms adapt the prototypical [NiFe]-hydrogenase system to function in the presence of oxygen.

PubMed Disclaimer

LinkOut - more resources