Gap junctions and propagation of the cardiac action potential
- PMID: 16646585
- DOI: 10.1159/000092563
Gap junctions and propagation of the cardiac action potential
Abstract
Pacemaker cells in the heart generate periodic electrical signals that are conducted to the working myocardium via the specialized conduction system. Effective cell-to-cell communication is critical for rapid, uniform conduction of cardiac action potentials-- a prerequisite for effective, synchronized cardiac contraction. Local circuit currents form the basis of the depolarization wave front in the working myocardium. These currents flow from cell to cell via gap junction channels. In this chapter, we trace the path of the action potential from its generation in the sinus node to propagation through the working myocardium, with a detailed discussion of the role of gap junctions. First, we review the transmembrane ionic currents and the basic principles of conduction of the action potential to the working myocardium via the specialized tissues of the heart. Next, we consider the relative contribution of cell geometry, size, and gap junction conductance. These factors are examined in terms of their source-to-sink relationships. Lastly, we will discuss new insights into the importance of gap junctions in cardiac conduction in health and disease which have been gained from high resolution optical mapping in connexin-deficient mice.
Similar articles
-
[Connexins and junctional channels. Roles in the spreading of cardiac electrical excitation and heart development].Pathol Biol (Paris). 2008 Jul;56(5):334-41. doi: 10.1016/j.patbio.2008.05.009. Epub 2008 Jun 30. Pathol Biol (Paris). 2008. PMID: 18586407 Review. French.
-
Role of gap junctions in the propagation of the cardiac action potential.Cardiovasc Res. 2004 May 1;62(2):309-22. doi: 10.1016/j.cardiores.2003.11.035. Cardiovasc Res. 2004. PMID: 15094351 Review.
-
Cell size and communication: role in structural and electrical development and remodeling of the heart.Heart Rhythm. 2004 Oct;1(4):500-15. doi: 10.1016/j.hrthm.2004.06.010. Heart Rhythm. 2004. PMID: 15851207
-
Conduction in cardiac tissue. Historical reflections.Physiol Rep. 2019 Jan;7(1):e13860. doi: 10.14814/phy2.13860. Physiol Rep. 2019. PMID: 30604919 Free PMC article. Review.
-
The molecular basis of anisotropy: role of gap junctions.J Cardiovasc Electrophysiol. 1995 Jun;6(6):498-510. doi: 10.1111/j.1540-8167.1995.tb00423.x. J Cardiovasc Electrophysiol. 1995. PMID: 7551319 Review.
Cited by
-
Myocardial lineage development.Circ Res. 2010 Dec 10;107(12):1428-44. doi: 10.1161/CIRCRESAHA.110.227405. Circ Res. 2010. PMID: 21148449 Free PMC article. Review.
-
Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis.Ann N Y Acad Sci. 2022 Sep;1515(1):105-119. doi: 10.1111/nyas.14812. Epub 2022 Jun 8. Ann N Y Acad Sci. 2022. PMID: 35676231 Free PMC article.
-
Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression.Am J Physiol Regul Integr Comp Physiol. 2013 Mar 1;304(5):R362-73. doi: 10.1152/ajpregu.00391.2012. Epub 2013 Jan 9. Am J Physiol Regul Integr Comp Physiol. 2013. PMID: 23302960 Free PMC article.
-
Multilayer control of cardiac electrophysiology by microRNAs.J Mol Cell Cardiol. 2022 May;166:107-115. doi: 10.1016/j.yjmcc.2022.02.007. Epub 2022 Mar 3. J Mol Cell Cardiol. 2022. PMID: 35247375 Free PMC article. Review.
-
Connexin43 and zonula occludens-1 are targets of Akt in cardiomyocytes that correlate with cardiac contractile dysfunction in Akt deficient hearts.Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt A):1183-1191. doi: 10.1016/j.bbadis.2018.01.022. Epub 2018 Jan 31. Biochim Biophys Acta Mol Basis Dis. 2018. PMID: 29378301 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous