The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner
- PMID: 16648972
- DOI: 10.1007/s00005-006-0015-1
The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner
Abstract
Introduction: Recently we identified in bone marrow (BM) by employing chemotactic isolation to SDF-1 gradient combined with real time RT-PCR analysis a mobile population of CXCR4+ BM mononuclear cells that express mRNA for various markers of early tissue-committed stem cells (TCSCs). In this study we evaluated whether TCSCs respond to other motomorphogens, such as hepatocyte growth factor (HGF) and leukemia inhibitory factor (LIF).
Materials and methods: We again employed chemotactic isolation combined with real-time RT-PCR analysis to assess whether murine and human BM contain TCSCs that respond to HGF and LIF gradients. We also evaluated expressions of HGF and LIF in damaged organs.
Results: We noted that the number of TCSCs is highest in BM from young (1- to 2-month-old) mice and decreases in 1-year-old animals. Murine and human TCSCs 1) respond to HGF and LIF gradients in addition to an SDF-1 gradient, 2) reside in populations of BM-derived non-hematopoietic CD45-cells, and 3) are released (mobilized) from BM into the peripheral blood (PB) during tissue injury (e.g. after partial body irradiation).
Conclusions: These findings further support our theory of the BM as a "hideout" for TCSCs and we suggest that their presence in BM tissue should be considered before experimental evidence is interpreted simply as transdifferentiation/plasticity of hematopoietic stem cells. Since we demonstrated that not only SDF-1, but also HGF and LIF are upregulated in damaged tissues, we postulate that CXCR4+ c-Met+ LIF-R+ TCSC could be mobilized from the BM into the PB, from which they are subsequently chemoattracted to damaged organs, where they play a role in tissue repair/regeneration.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
