Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jun;23(6):906-20.
doi: 10.1002/jmri.20577.

Combining EEG and fMRI: a multimodal tool for epilepsy research

Affiliations
Review

Combining EEG and fMRI: a multimodal tool for epilepsy research

Jean Gotman et al. J Magn Reson Imaging. 2006 Jun.

Abstract

Patients with epilepsy often present in their electroencephalogram (EEG) short electrical potentials (spikes or spike-wave bursts) that are not accompanied by clinical manifestations but are of important diagnostic significance. They result from a population of abnormally hyperactive and hypersynchronous neurons. It is not easy to determine the location of the cerebral generators and the other brain regions that may be involved as a result of this abnormal activity. The possibility to combine EEG recording with functional MRI (fMRI) scanning opens the opportunity to uncover the regions of the brain showing changes in the fMRI signal in response to epileptic spikes seen in the EEG. These regions are presumably involved in the abnormal neuronal activity at the origin of epileptic discharges. This paper reviews the methodology involved in performing such studies, particularly the challenge of recording a good quality EEG inside the MR scanner while scanning is taking place, and the methods required for the statistical analysis of the combined EEG and fMRI time series. We review the results obtained in patients with different types of epileptic disorders and discuss the difficult theoretical problems raised by the interpretation of an increase (activation) and decrease (deactivation) in blood oxygen level dependent (BOLD) signal, both frequently seen in response to spikes.

PubMed Disclaimer

Publication types