Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 May 16;467(1):65-71.
doi: 10.1016/0005-2736(77)90242-5.

Cotransport of phosphate and sodium by yeast

Cotransport of phosphate and sodium by yeast

G M Roomans et al. Biochim Biophys Acta. .

Abstract

Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 micronM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 micronM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Ribidium has no effect on the stimulation of phosphate uptake by sodium. Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake. The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources