Effects of ciliary neuronotrophic factor on rat spinal cord neurons in vitro: survival and expression of choline acetyltransferase and low-affinity nerve growth factor receptors
- PMID: 1665106
- DOI: 10.1016/0165-3806(91)90074-s
Effects of ciliary neuronotrophic factor on rat spinal cord neurons in vitro: survival and expression of choline acetyltransferase and low-affinity nerve growth factor receptors
Abstract
We have studied the effects of ciliary neuronotrophic factor (CNTF) and nerve growth factor (NGF) on cultures of E14 rat spinal cord cells maintained for 7 days. The trophic factors were supplied at the day of seeding and every other day thereafter. Treatments with CNTF (human recombinant or purified from rat sciatic nerve, 100 TU/ml) resulted after 7 days in an increase, relative to control cultures, of: (i) the total number of neurons (identified by neurofilament protein and neuron-specific enolase immunostaining) that were not stained with choline, acetyltransferase (ChAT) and low affinity nerve growth factor receptor (LNGFR) antibodies; (ii) the number of motoneurons (0.5% of the neuronal population) as identified by size (greater than 25 microns), morphology and immunostaining for ChAT and LNGFR; and (iii) a population of small- to medium-sized (less than 25 microns), ChAT- and LNGFR-positive neurons, representing 5-10% of the total neuronal population. NGF treatments (mouse submaxillary beta NGF; 10-3000 TU/ml) were without effect on all 3 neuronal populations. Experiments in which CNTF administration was delayed revealed that the population of ChAT- and LNGFR-negative neurons and the population of motoneurons, were both dependent on CNTF for their survival. The third population, small ChAT and LNGFR-positive neurons, was not dependent on CNTF for survival but was induced by CNTF to express its two markers. These observations indicate that CNTF is a neuronotrophic factor for motoneurons, but that the effect of CNTF is not restricted to that cell population. In addition to its survival promoting effect, CNTF has also a regulatory role on the expression of ChAT and LNGFR for some spinal cord neurons.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
