Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 1;66(9):4750-7.
doi: 10.1158/0008-5472.CAN-05-4422.

MET overexpression turns human primary osteoblasts into osteosarcomas

Affiliations
Free article

MET overexpression turns human primary osteoblasts into osteosarcomas

Salvatore Patanè et al. Cancer Res. .
Free article

Abstract

The MET oncogene was causally involved in the pathogenesis of a rare tumor, i.e., the papillary renal cell carcinoma, in which activating mutations, either germline or somatic, were identified. MET activating mutations are rarely found in other human tumors, whereas at higher frequencies, MET is amplified and/or overexpressed in sporadic tumors of specific histotypes, including osteosarcoma. In this work, we provide experimental evidence that overexpression of the MET oncogene causes and sustains the full-blown transformation of osteoblasts. Overexpression of MET, obtained by lentiviral vector-mediated gene transfer, resulted in the conversion of primary human osteoblasts into osteosarcoma cells, displaying the transformed phenotype in vitro and the distinguishing features of human osteosarcomas in vivo. These included atypical nuclei, aberrant mitoses, production of alkaline phosphatase, secretion of osteoid extracellular matrix, and striking neovascularization. Although with a lower tumorigenicity, this phenotype was superimposable to that observed after transfer of the MET gene activated by mutation. Both transformation and tumorigenesis were fully abrogated when MET expression was quenched by short-hairpin RNA or when signaling was impaired by a dominant-negative MET receptor. These data show that MET overexpression is oncogenic and that it is essential for the maintenance of the cancer phenotype.

PubMed Disclaimer

Publication types

MeSH terms