Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Sep;69(9):586-607.
doi: 10.1139/o91-089.

Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits

Affiliations
Review

Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits

C E Cooper et al. Biochem Cell Biol. 1991 Sep.

Abstract

Mitochondrial cytochrome c oxidase and its bacterial homologs catalyze electron transfer and proton translocation reactions across membranes. The eukaryotic enzyme complex consists of a large number of polypeptide subunits. Three of the subunits (I, II, and III) are mitochondrially encoded while the remaining 6 (yeast) to 10 (bovine) are nuclear encoded. Antibody and chemical-labelling experiments suggest that subunits I-III and most (but not all) of the nuclear-encoded subunits span the inner mitochondrial membrane. Subunits I and II are the catalytic core of the enzyme. Subunit I contains haem a, haem a3 and CuB, while subunit II contains CuA and the cytochrome c binding site. Subunit III and most of the nuclear subunits are essential for the assembly of a functional catalytic enzyme. Some nuclear subunits are present as isozymes, although little functional difference has yet been detected between enzyme complexes composed of different isozymes. Therefore, any additional role attributed to the nuclear-encoded subunits beyond that of enzyme assembly must be tentative. We suggest that enough evidence exists to support the idea that modification of the larger nuclear subunits (IV, V, and possibly VI) can effect enzyme turnover in vitro. Whether this is a physiological control mechanism remains to be seen.

PubMed Disclaimer

Publication types

LinkOut - more resources