Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria
- PMID: 1665692
- DOI: 10.1002/bies.950130906
Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria
Abstract
Protons are the most common coupling ions in bacterial energy conversions. However, while many organisms, such as the alkaliphilic Bacilli, employ H(+)-bioenergetics for electron transport phosphorylation, they use Na+ as the coupling ion for transport and flagellar movement. The Na+ gradient required for these bioenergetic functions is established by the secondary Na+/H+ antiporter. In contrast, Vibrio alginolyticus and methanogenic bacteria have primary pumps for both H+ and Na+. They use the proton gradient for ATP synthesis while other, less energy-consuming membrane reactions are powered by the Na+ gradient. In a third mode, some anaerobic bacteria possess decarboxylases acting as primary Na+ pumps. For instance, in Klebsiella pneumoniae, the Na+ gradient established by oxaloacetate decarboxylase is used for the uptake of the growth substrate citrate, and Propionigenium modestum consumes the energy of the Na+ gradient formed by methylmalonyl-CoA decarboxylase directly for ATP synthesis.
Similar articles
-
Bacterial sodium ion-coupled energetics.Antonie Van Leeuwenhoek. 1994;65(4):381-95. doi: 10.1007/BF00872221. Antonie Van Leeuwenhoek. 1994. PMID: 7832594 Review.
-
Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.Adv Microb Physiol. 2004;49:175-218. doi: 10.1016/S0065-2911(04)49004-3. Adv Microb Physiol. 2004. PMID: 15518831 Review.
-
A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells.J Mol Biol. 1995 Nov 10;253(5):726-38. doi: 10.1006/jmbi.1995.0586. J Mol Biol. 1995. PMID: 7473747
-
Evolution of membrane bioenergetics.J Supramol Struct. 1980;13(4):421-46. doi: 10.1002/jss.400130403. J Supramol Struct. 1980. PMID: 6453255 Review.
-
Mechanisms of sodium transport in bacteria.Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):465-77. doi: 10.1098/rstb.1990.0025. Philos Trans R Soc Lond B Biol Sci. 1990. PMID: 1970650 Review.
Cited by
-
Biology of membrane transport proteins.Pharm Res. 1995 Dec;12(12):1823-37. doi: 10.1023/a:1016211015926. Pharm Res. 1995. PMID: 8786953 Review.
-
Characterization of Two Na+(K+, Li+)/H+ Antiporters from Natronorubrum daqingense.Int J Mol Sci. 2023 Jun 28;24(13):10786. doi: 10.3390/ijms241310786. Int J Mol Sci. 2023. PMID: 37445962 Free PMC article.
-
Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3.J Bacteriol. 1996 Jul;178(14):4099-104. doi: 10.1128/jb.178.14.4099-4104.1996. J Bacteriol. 1996. PMID: 8763937 Free PMC article.
-
Na(+) as coupling ion in energy transduction in extremophilic Bacteria and Archaea.World J Microbiol Biotechnol. 1995 Jan;11(1):58-70. doi: 10.1007/BF00339136. World J Microbiol Biotechnol. 1995. PMID: 24414411
-
Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons.Microbiol Mol Biol Rev. 2001 Sep;65(3):353-70, table of contents. doi: 10.1128/MMBR.65.3.353-370.2001. Microbiol Mol Biol Rev. 2001. PMID: 11528000 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources