Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1970 Nov;46(5):699-704.
doi: 10.1104/pp.46.5.699.

Photochemical characteristics in a soybean mutant

Affiliations

Photochemical characteristics in a soybean mutant

R W Keck et al. Plant Physiol. 1970 Nov.

Abstract

Chloroplasts were isolated from wild type (DG) and heterozygous mutant (LG) soybean (Glycine max) leaves, and various biochemical functions were compared. Noncyclic electron transport, and its coupled phosphorylation, cyclic phosphorylation and H(+) ion transport in both systems, were 3 to 5 times faster in rate (on a chlorophyll basis) in the mutant plastids. On a chloroplast lamellar protein basis, the mutant plastid rates were 1.5 to 2.5 times the wild type rates.Plastoquinone (PQ) reduction and oxidation (rates and extent) were measured by following absorbance changes at 260 nanometers with the repetitive flash technique. Mutant plastids have about a 2-fold greater apparent first order rate constant for PQ oxidation and a 3- to 5-fold larger pool of rapidly reducible PQ. Plastoquinone oxidation has been identified by other workers as the rate-limiting step in electron transport. Assuming the PQ oxidation is a first order process (d(PQH(2))/dt = k(D)[PQH(2)]t), the observed increase in k(d) for the LG (k(d) (LG) approximately 2k(d) (DG)) and the greater steady state amount of rapidly turning over PQ, [PQH(2)](LG)>[PQH(2)](DG), could account for the 3- to 5-fold greater rates of electron transport and phosphorylation found in the mutant chloroplasts.Light saturation for noncyclic photophosphorylation and photosystem 2 plus 1 electron transport occurred at similar intensities for both LG and DG plastids. Relative quantum requirements extrapolated to zero intensity were similar in the LG and DG, although at finite light intensities the LG had a better relative quantum efficiency.Ammonium chloride concentrations needed to inhibit cyclic photophosphorylation 50% were similar in both LG and DG plastids. Nigericin, poly-l-lysine, and chlorotri-n-butyltin, were needed in concentrations 5 to 10 times greater in the LG to yield 50% inhibition at comparable chlorophyll concentrations.

PubMed Disclaimer

References

    1. Plant Physiol. 1959 May;34(3):293-300 - PubMed
    1. Proc Natl Acad Sci U S A. 1967 Feb;57(2):395-400 - PubMed
    1. Biochim Biophys Acta. 1966 Oct 10;126(2):189-99 - PubMed
    1. Plant Physiol. 1969 Jun;44(6):929-31 - PubMed
    1. Plant Physiol. 1968 Jul;43(7):1049-55 - PubMed

LinkOut - more resources