Regulation of sulfate transport in filamentous fungi
- PMID: 16657536
- PMCID: PMC396667
- DOI: 10.1104/pp.46.5.720
Regulation of sulfate transport in filamentous fungi
Abstract
Inorganic sulfate enters the mycelia of Aspergillus nidulans, Penicillium chrysogenum, and Penicillium notatum by a temperature-, energy-, pH-, ionic strength-, and concentration-dependent transport system ("permease"). Transport is unidirectional. In the presence of excess external sulfate, ATP sulfurylase-negative mutants will accumulate inorganic sulfate intracellularly to a level of about 0.04 m. The intracellular sulfate can be retained against a concentration gradient. Retention is not energy-dependent, nor is there any exchange between intracellular (accumulated) and extracellular sulfate. The sulfate permease is under metabolic control. Sulfur starvation of high methionine-grown mycelia results in about a 1000-fold increase in the specific sulfate transport activity at low external sulfate concentrations. l-Methionine is a metabolic repressor of the sulfate permease, while intracellular sulfate and possibly l-cysteine (or a derivative of l-cysteine) are feedback inhibitors. Sulfate transport follows hyperbolic saturation kinetics with a Michaelis constant (Km) value of 6 x 10(-5) to 10(-4)m and a V(max) (for maximally sulfurstarved mycelia) of about 5 micromoles per gram per minute. Refeeding sulfur-starved mycelia with sulfate or cysteine results in about a 10-fold decrease in the V(max) value with no marked change in the Km. Azide and dinitrophenol also reduce the V(max.).
Similar articles
-
Specificity and control of choline-O-sulfate transport in filamentous fungi.J Bacteriol. 1968 Nov;96(5):1574-85. doi: 10.1128/jb.96.5.1574-1585.1968. J Bacteriol. 1968. PMID: 5726299 Free PMC article.
-
ATP sulfurylase from Penicillium chrysogenum: is the internal level of the enzyme sufficient to account for the rate of sulfate utilization?J Bacteriol. 1979 Jan;137(1):350-6. doi: 10.1128/jb.137.1.350-356.1979. J Bacteriol. 1979. PMID: 104967 Free PMC article.
-
Regulation of inorganic sulfate activation in filamentous fungi. Allosteric inhibition of ATP sulfurylase by 3'-phosphoadenosine-5'-phosphosulfate.J Biol Chem. 1990 Jun 25;265(18):10300-8. J Biol Chem. 1990. PMID: 2162344
-
Molecular genetics of sulfur assimilation in filamentous fungi and yeast.Annu Rev Microbiol. 1997;51:73-96. doi: 10.1146/annurev.micro.51.1.73. Annu Rev Microbiol. 1997. PMID: 9343344 Review.
-
Manipulation of thiol contents in plants.Amino Acids. 2001;20(3):291-9. doi: 10.1007/s007260170045. Amino Acids. 2001. PMID: 11354605 Review.
Cited by
-
Mechanism of the antimicrobial action of pyrithione: effects on membrane transport, ATP levels, and protein synthesis.Antimicrob Agents Chemother. 1978 Jul;14(1):60-8. doi: 10.1128/AAC.14.1.60. Antimicrob Agents Chemother. 1978. PMID: 28693 Free PMC article.
-
Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force.J Bacteriol. 1973 Mar;113(3):1184-92. doi: 10.1128/jb.113.3.1184-1192.1973. J Bacteriol. 1973. PMID: 4632394 Free PMC article.
-
At least four regulatory genes control sulphur metabolite repression in Aspergillus nidulans.Mol Gen Genet. 1993 Apr;238(1-2):185-92. doi: 10.1007/BF00279546. Mol Gen Genet. 1993. PMID: 8479426
-
Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Role of cysteine and-or homocysteine as regulatory effectors.Mol Gen Genet. 1974;132(4):307-20. doi: 10.1007/BF00268571. Mol Gen Genet. 1974. PMID: 4610340 No abstract available.
-
Transinhibition kinetics of the sulfate transport system of Penicillium notatum: analysis based on an iso uni uni velocity equation.J Membr Biol. 1974 Jul 12;17(3):239-52. doi: 10.1007/BF01870185. J Membr Biol. 1974. PMID: 4847761 No abstract available.
References
LinkOut - more resources
Full Text Sources