Contributions of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings
- PMID: 16657788
- PMCID: PMC396856
- DOI: 10.1104/pp.48.3.312
Contributions of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings
Abstract
Turnip seedlings (Brassica rapa L.) irradiated for 24 hours with radiation at 720 nanometers synthesize chlorophyll a and anthocyanin. Antimycin A and 2,4-dinitrophenol, which are known to reduce cyclic photophosphorylation, also reduce anthocyanin synthesis. Noncyclic photophosphorylation is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and o-phenanthroline. These compounds promote cyclic photophosphorylation and anthocyanin synthesis. On the basis of these findings it is suggested that the photomorphogenic response of anthocyanin synthesis in turnip seedlings arises in part through photosynthetic activity.Phytochrome involvement in turnip seedling photomorphogenesis is evidenced by the photoreversibility of anthocyanin synthesis in response to 5-minute irradiations with red or far red light. The inhibition of anthocyanin synthesis by 2,4-dinitrophenol does not arise from a destruction of phytochrome photoreversibility.It is suggested that plant photomorphogenic responses to prolonged far red irradiations arise through the photochemical activation of at least two pigment systems; namely, the photosynthetic pigments and phytochrome.
References
LinkOut - more resources
Full Text Sources
