Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Aug;52(2):147-50.
doi: 10.1104/pp.52.2.147.

Organic acids and iron translocation in maize genotypes

Affiliations

Organic acids and iron translocation in maize genotypes

R B Clark et al. Plant Physiol. 1973 Aug.

Abstract

Translocation of Fe was studied in WF9 (Fe-efficient) and ys(1)/ys(1) (Fe-inefficient) maize (Zea mays L.) genotypes. Iron-deficient WF9 translocated more Fe to the tops than Fe-deficient ys(1)/ys(1). Malate and citrate contents of root saps increased nearly 2-fold and aconitate increased over 4-fold in both genotypes as Fe of nutrient solutions increased from 0.1 to 3 milligrams per liter. Relative acid contents in root saps were as follows: malate > aconitate > citrate. Citric acid concentrations in stem exudates were nearly the same as in root sap. Malic acid concentrations were considerably lower in exudates than in root saps, and only a trace of aconitic acid was detected in the exudates. The concentration of Fe was 7-fold higher in exudate of WF9 than in exudate of ys(1)/ys(1) and the concentration of exudate P was about the same for both genotypes.Electropherograms of WF9 stem exudates showed that (59)Fe moved toward the anode as (59)Fe-citrate. Exudates of ys(1)/ys(1) contained insufficient (59)Fe to produce radiographs. When (59)Fe was added in vitro to ys(1)/ys(1) stem exudate, the (59)Fe moved as (59)Fe-citrate, indicating that sufficient citric acid was present in the exudate to chelate the Fe. Effectiveness of citric, isocitric, trans-aconitic, and malic acids in moving (59)Fe electrophoretically in acetate, citrate, isocitrate, trans-aconitate, and malate buffers was studied. Malic, acetic, and trans-aconitic acids were ineffective in moving Fe from the origin. Citric acid moved Fe anodically whenever present on the electropherogram and successfully competed with the other acids for Fe.Results with ys(1)/ys(1) roots indicate an absence of an efficient mechanism for transporting Fe from cortical cells to the xylem. If Fe can reach the xylem stream, the ys(1)/ys(1) genotype should be as efficient as WF9 in moving Fe to the leaves.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1971 Jun;47(6):836-40 - PubMed
    1. Plant Physiol. 1932 Apr;7(2):227-52 - PubMed
    1. J Biol Chem. 1951 Jan;188(1):379-88 - PubMed
    1. Plant Physiol. 1966 Mar;41(3):510-4 - PubMed
    1. Plant Physiol. 1965 Mar;40(2):395-400 - PubMed

LinkOut - more resources