Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Sep;54(3):294-303.
doi: 10.1104/pp.54.3.294.

The Metabolism of Oat Leaves during Senescence: I. Respiration, Carbohydrate Metabolism, and the Action of Cytokinins

Affiliations

The Metabolism of Oat Leaves during Senescence: I. Respiration, Carbohydrate Metabolism, and the Action of Cytokinins

R M Tetley et al. Plant Physiol. 1974 Sep.

Abstract

When the detached first leaves of green or etiolated oat (Avena sativa cv. Victory) seedlings senesce in the dark, their oxygen consumption shows a large increase, beginning after 24 hours and reaching a peak of up to 2.5 times the initial rate by the 3rd day. This effect takes place while the chlorophyll of green leaves, or the carotenoid of etiolated leaves, is steadily decreasing. Kinetin, at a concentration which inhibits the decrease in pigment, completely prevents the respiratory rise; instead, the oxygen consumption drifts downwards. Lower kinetin concentrations have a proportional effect, 50% reduction of respiration being given by about 0.1 mg/l. About one-fifth of the respiratory rise may be attributed to the free amino acids which are liberated during senescence; several amino acids are shown to cause increases of almost 50% in the oxygen consumption when supplied at the concentrations of total amino acid present during senescence. A smaller part of the rise may also be due to soluble sugars liberated during senescence, largely coming from the hydrolysis of a presumptive fructosan. The remainder, and the largest part, of the increase is ascribed to a natural uncoupling of respiration from phosphorylation. This is deduced from the fact that dinitrophenol causes a similar large rise in the oxygen consumption of the fresh leaves or of leaf segments kept green with kinetin, but causes only a very small rise when the oxygen consumption is near its peak in senescent controls. The respiration of these leaves is resistant to cyanide, and 10 mm KCN even increases it by some 30%; in contrast, etiolated leaves of the same age, which undergo a similar rise in oxygen consumption over the same time period, show normal sensitivity to cyanide. The respiratory quotient during senescence goes down as low as 0.7, both with and without kinetin, though it is somewhat increased by supplying sugars or amino acids; glucose or alanine at 0.3 m bring it up to 1.0 and 0.87, respectively.N(6)-Benzylaminopurine and Delta-2-isopentenylaminopurine act similarly to kinetin in repressing the respiratory rise, the former being five times as active as kinetin, while the latter has only 1% of the activity of kinetin. Zeatin also powerfully prevents senescence. Because the repression of the respiratory rise is shown by each cytokinin at the concentration at which it inhibits senescence, the action is ascribed in both cases to the maintenance of a tight coupling between respiration and phosphorylation. It is pointed out that such an effect would explain many features of cytokinin action.A change in the methodology of the senescence experiments is described and compared with the method previously used, and the influence of temperature and age of the plants on the course of leaf senescence are presented in detail.

PubMed Disclaimer

References

    1. Plant Physiol. 1972 Oct;50(4):432-7 - PubMed
    1. Plant Physiol. 1963 Sep;38(5):594-604 - PubMed
    1. Plant Physiol. 1972 Nov;50(5):594-8 - PubMed
    1. Plant Physiol. 1972 Jan;49(1):64-71 - PubMed
    1. Plant Physiol. 1962 Jul;37(4):509-12 - PubMed

LinkOut - more resources