Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Nov;56(5):600-4.
doi: 10.1104/pp.56.5.600.

Ribulose 1,5-Diphosphate Carboxylase Synthesis in Euglena: II. Effect of Inhibitors on Enzyme Synthesis during Regreening and Subsequent Transfer to Darkness

Affiliations

Ribulose 1,5-Diphosphate Carboxylase Synthesis in Euglena: II. Effect of Inhibitors on Enzyme Synthesis during Regreening and Subsequent Transfer to Darkness

J M Lord et al. Plant Physiol. 1975 Nov.

Abstract

Dark-grown Euglena gracilis Klebs strain Z Pringsheim cells, which have been partially regreened in the light, show a striking, continued synthesis of the chloroplast enzyme ribulose 1,5-diphosphate carboxylase on transfer back into darkness. This dark synthesis of the enzyme was completely prevented by the addition of 15 mug/ml of cycloheximide to the culture medium but was unaffected, for at least 8 hours, by the addition of 1 mg/ml of d-threo-chloramphenicol. The addition of either cycloheximide or d-threo-chloramphenicol to dark-grown cultures at the onset of illumination completely inhibited the light-induced synthesis of ribulose 1,5-diphosphate carboxylase. When cells which had been illuminated in the presence of d-threo-chloramphenicol, and hence were unable to synthesize ribulose 1,5-diphosphate carboxylase, were transferred to darkness in the absence of this inhibitor, synthesis of the carboxylase then occurred. Dark-grown cells which had been illuminated in the presence of cycloheximide failed to synthesize the enzyme when placed in the dark in the absence of cycloheximide. The addition of 5-fluorouracil to regreening cultures to prevent light-induced transcriptional steps completely blocked the synthesis of ribulose 1,5-diphosphate carboxylase.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochemistry. 1971 Feb 16;10(4):692-701 - PubMed
    1. Biochim Biophys Acta. 1973 Aug 24;319(2):223-34 - PubMed
    1. Biochem Biophys Res Commun. 1962 May 11;7:385-9 - PubMed
    1. Plant Physiol. 1964 Mar;39(2):220-6 - PubMed
    1. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1327-34 - PubMed

LinkOut - more resources