Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Oct;60(4):609-16.
doi: 10.1104/pp.60.4.609.

Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes

Affiliations

Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes

D A Lewis et al. Plant Physiol. 1977 Oct.

Abstract

The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days.Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days.Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C.

PubMed Disclaimer

References

    1. Biophys J. 1976 Jun;16(6):561-9 - PubMed
    1. Plant Physiol. 1974 Aug;54(2):177-81 - PubMed
    1. Am Sci. 1972 May-Jun;60(3):338-47 - PubMed
    1. Science. 1968 Mar 1;159(3818):994-5 - PubMed

LinkOut - more resources