Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Mar;61(3):430-3.
doi: 10.1104/pp.61.3.430.

Uptake of mercury vapor by wheat: an assimilation model

Affiliations

Uptake of mercury vapor by wheat: an assimilation model

C L Browne et al. Plant Physiol. 1978 Mar.

Abstract

Using a whole-plant chamber and (203)Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, [Formula: see text]where U(Hg) is the rate of mercury uptake per unit leaf surface, C(a)' is the ambient mercury vapor concentration, C(l)' is the mercury concentration at immobilization sites within the plant (assumed to be zero), r(l.Hg) is the total leaf resistance to mercury vapor exchange, and r(m.hg) is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake.Essentially all mercury vapor uptake was confined to the leaves. r(l.hg) was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 C) and mercury vapor concentration (0 to 40 mug m(-3)). The principal limitation to mercury vapor uptake was r(m.hg), which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness.Knowing C(a)' and estimating r(l.hg) and r(m.hg) from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model.

PubMed Disclaimer

References

    1. Plant Physiol. 1971 Feb;47(2):269-74 - PubMed
    1. Plant Physiol. 1976 Apr;57(4):628-31 - PubMed
    1. Plant Physiol. 1978 Feb;61(2):231-5 - PubMed

LinkOut - more resources