Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Aug;62(2):249-55.
doi: 10.1104/pp.62.2.249.

Respiratory Contribution of the Alternate Path during Various Stages of Ripening in Avocado and Banana Fruits

Affiliations

Respiratory Contribution of the Alternate Path during Various Stages of Ripening in Avocado and Banana Fruits

A Theologis et al. Plant Physiol. 1978 Aug.

Abstract

The respiration of fresh slices of preclimacteric avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii var. Valery) fruits is stimulated by cyanide and antimycin. The respiration is sensitive to m-chlorobenzhydroxamic acid in the presence of cyanide but much less so in the presence of antimycin. In the absence of cyanide the contribution of the cyanide-resistant pathway to the coupled preclimacteric respiration is zero. In uncoupled slices, by contrast, the alternate path is engaged and utilized fully in avocado, and extensively in banana. Midclimacteric and peak climacteric slices are also cyanide-resistant and, in the presence of cyanide, sensitive to m-chlorobenzhydroxamic acid. In the absence of uncoupler there is no contribution by the alternate path in either tissue. In uncoupled midclimacteric avocado slices the alternate path is fully engaged. Midclimacteric banana slices, however, do not respond to uncouplers, and the alternate path is not engaged. Avocado and banana slices at the climacteric peak neither respond to uncouplers nor utilize the alternate path in the presence or absence of uncoupler.The maximal capacities of the cytochrome and alternate paths, V(cyt) and V(alt), respectively, have been estimated in slices from preclimacteric and climacteric avocado fruit and found to remain unchanged. The total respiratory capacity in preclimacteric and climacteric slices exceeds the respiratory rise which attends fruit ripening. In banana V(alt) decreases slightly with ripening.The aging of thin preclimacteric avocado slices in moist air results in ripening with an accompanying climacteric rise. In this case the alternate path is fully engaged at the climacteric peak, and the respiration represents the total potential respiratory capacity present in preclimacteric tissue. The respiratory climacteric in intact avocado and banana fruits is cytochrome path-mediated, whereas the respiratory climacteric of ripened thin avocado slices comprises the alternate as well as the cytochrome path. The ripening of intact fruits is seemingly independent of the nature of the electron transport path.Uncouplers are thought to stimulate glycolysis to the point where the glycolytic flux exceeds the oxidative capacity of the cytochrome path, with the result that the alternate path is engaged.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 1978 Aug;62(2):243-8 - PubMed
    1. Blood. 1977 Mar;49(3):445-54 - PubMed
    1. Plant Physiol. 1971 Jan;47(1):124-8 - PubMed
    1. Plant Physiol. 1962 Sep;37(5):679-90 - PubMed
    1. J Biol Chem. 1973 May 25;248(10):3441-5 - PubMed

LinkOut - more resources