Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Feb;63(2):382-7.
doi: 10.1104/pp.63.2.382.

In Vitro Binding of Agrobacterium tumefaciens to Plant Cells from Suspension Culture

Affiliations

In Vitro Binding of Agrobacterium tumefaciens to Plant Cells from Suspension Culture

K Ohyama et al. Plant Physiol. 1979 Feb.

Abstract

In vitro binding experiments were carried out using (32)P-labeled cells of the virulent Agrobacterium tumefaciens strain B6 and Datura innoxia cells from suspension culture. Binding kinetics showed that adherence of bacteria to Datura cells increased gradually during the first 60 minutes and attained a maximum level within 120 minutes of incubation. Maximum binding occurred at pH 6.0. The presence of Ca(2+) and Mg(2+) reduced binding slightly and EDTA had little effect at concentrations of 0.1 to 10 millimolar. The binding of bacteria to Datura cells was temperature-dependent. Escherichia coli, Salmonella typhimurium, Rhizobium japonicum, and Micrococcus lysodeikticus did not compete with virulent A. tumefaciens strain B6 for binding to Datura cells. The admixture of avirulent A. tumefaciens strain IIBNV6 enhanced adherence of virulent A. tumefaciens strain B6 to Datura cells. Octopine had no effect on the binding of virulent A. tumefaciens strain B6 to Datura cells, but 10 millimolar canavanine was inhibitory. Arginine enhanced the adherence of the bacteria at concentrations higher than 0.1 millimolar. Incubation with DNase, RNase, and lipase did not affect the binding, but protease stimulated the adherence of bacteria to Datura cells. Concanavaline A and soybean lectin had little effect whereas lecithin and lysolecithin enhanced binding slightly. Poly-l-lysine markedly stimulated the bacteria-plant cell adherence. Cells from suspension cultures of pea, vetch, and soybean had a 2- to 3-fold higher binding capacity than Datura cells, whereas cells from wheat, corn, rice, and sorghum had a considerably lower affinity for binding with virulent A. tumefaciens strain B6. Bacterial adherence to plant cells was confirmed by autoradiography and electron microscopy. Autoradiographic analysis showed that bacteria were associated with the cell wall, and that often binding of bacteria was localized. Electron micrographs clearly illustrated a tight association of virulent A. tumefaciens strain B6 cells to the Datura cell wall.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Can J Microbiol. 1967 Dec;13(12):1591-603 - PubMed
    1. Science. 1978 Mar 10;199(4333):1075-8 - PubMed
    1. J Mol Biol. 1974 Jun 15;86(1):109-27 - PubMed
    1. Plant Physiol. 1977 Mar;59(3):388-90 - PubMed
    1. Can J Microbiol. 1975 Mar;21(3):395-408 - PubMed

LinkOut - more resources